Ozone Spikes

Are they apparent in the G-1 data?

Yes- Multiple days 8/19, 8/21, 8/26, 8/29, 8/31, 9/6, 9/12

Ozone Spikes

What are their characteristics?

a. High O₃ production efficiencies, e.g, afternoon flight of 8/19

Ozone Spikes

b. Associated with high concentrations of secondary organic species such as HCHO.

For example-

HCHO is a product of HC oxidation. Suggests that O₃ spike associated with high initial HC concentrations, perhaps high concentrations of alkenes.

How can we understand source of these localized regions of high O_3 concentration?

•Examine regions where high O_3 concentrations observed and do some archeology.

Analyze hydrocarbon reactivity

Look at product distributions (e.g., HCHO, Peroxides, PANs, etc.)

Do trajectory analysis to find out where these regions came from.

•Examine $P(O_3)$ - (constrained box model calculations)

Identify conditions and locations where $P(O_3)$ high.

Identify compounds responsible for hydrocarbon reactivity.

Connect regions where $P(O_3)$ high to regions where high O_3 concentrations observed.

Geographic Distribution of P(O₃)

Geographic Distribution of Hydrocarbon Reactivity

Characteristics of O_3 production when $P(O_3)$ high

Connect regions of high $P(O_3)$ to regions where O_3 high

August 29 Morning Ozone Production Rates

Connect regions of high $P(O_3)$ to regions where O_3 high

